Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.
نویسندگان
چکیده
Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.
منابع مشابه
Focal adhesion kinase-dependent apoptosis of melanoma induced by tyrosine and phenylalanine deficiency.
We found previously that restriction of tyrosine (Tyr) and phenylalanine (Phe) inhibited growth and metastasis of B16BL6 murine melanoma and arrested these cells in the G0-G1 phase of the cell cycle. Here, we report that deprivation of these two amino acids in vitro induces apoptosis in B16BL6 and in human A375 melanoma cells but not in nontransformed, neonatal murine epidermal cells or human i...
متن کاملDiperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The...
متن کاملActivation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity.
The purpose of these studies was to determine whether triggering murine peritoneal macrophages to a tumoricidal state by lipopolysaccharide (LPS) requires protein-tyrosine phosphorylation. The LPS-triggered activation of mouse macrophages to lyse syngeneic B16 melanoma cells was significantly inhibited in a dose-dependent manner by the protein-tyrosine kinase (PTK) inhibitors genistein, herbimy...
متن کاملResistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1.
The adhesion receptor SHPS-1 activates the protein-tyrosine-phosphatase SHP-2 and thereby promotes integrin-mediated reorganization of the cytoskeleton. SHPS-1 also contributes to cell-cell communication through association with CD47. Although functional alteration of SHPS-1 is implicated in cellular transformation, the role of the CD47-SHPS-1 interaction in carcinogenesis has been unclear. A s...
متن کاملCaveolin-1-Enhanced Motility and Focal Adhesion Turnover Require Tyrosine-14 but Not Accumulation to the Rear in Metastatic Cancer Cells
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Invasion & metastasis
دوره 17 4 شماره
صفحات -
تاریخ انتشار 1997